30/09/13

TIC TAC GO Penjumlahan
paper based applet


belajar sambil bermain adalah salah satu metode yang bisa dipakai guru dalam mengajar matematika, terutama untuk siswa kelas rendah (kelas 1, 2, dan 3 sekolah dasar). pembelajaran yang efektif dan dilaksanakan dengan cara yang menyenangkan akan membuat siswa lebih menyukai matematika dan tidak takut lagi pada matematika.

di sini akan ada salah satu Applet yang telah saya sebutkan post sebelumnya yang dibuat ke dalam paper based, jadi guru tidak membutuhkan koneksi internet untuk memakai games ini. games ini berjudul tic tac go penjumlahan. di Indonesia tic tac go lebih dikenal oleh anak-anak sebagai permainan SOS.

permainan tic ta go ini sama dengan permainan tic tac go pada umumnya, hanya saja aturan permainannya dimodifikasi untuk pembelajaran penjumlahan bilangan kurang dari 20. permainan ini secara online dapat dimainkan di make five (tic tac go penjumlahan)  .

permainan ini cocok untuk siswa kelas 2 sekolah dasar yang telah belajar mengenai penjumlahan 1 - 20. permainan ini bisa dimaksudkan untuk latihan memperlancar penjumlahan 1 - 20.

aturan permainan
  1. alat yang digunakan adalah papan permainan tic tac go, dan seperangkat kartu bilangan yang akan dipakai sebagai soal yang akan dijawab. papan tic tac go dapat diperoleh di kartu penjumlahan dan kartu bilangan bisa diperoleh di kartu bilangan. (kartu bilangan sebaiknya dicetak menggunakan kartu tebal sehingga bisa dipakai berulang kali)
  2. Permainan dilakukan oleh dua orang pemain dengan memakai tanda yang berbeda, dan seorang wasit. 
  3. pemain 1  menggunakan tanda O dan pemain 2 menggunakan tanda X.
  4. wasit bertugas untuk membagikan kartu bilangan dan mengoreksi jawaban peserta.
  5. permainan dilakukan bergantian antara pemain 1 dan pemain 2 dengan memberi tanda (sesuai tandanya masing-masing) pada kotak hasil penjumlahan yang hasilnya tercantum di kartu bilangan. misalnya kartu menunjukan bilangan 6 artinya pemain dapat memberi tanda pada kotak (5 + 1, 4 + 2, 3 + 3, 2 + 4, atau 5 + 1)
  6. kotak yang telah ditandai tidak boleh ditandai lagi.
  7. pemain yang menang adalah pemain yang bisa membuat 5 tanda secara vertikal atau horizontal.
  8. pemain diperbolehkan untuk menjegal pemain lawan dengan menutup jalan.

permainan ini sangat mudah dilakukan dan cukup menyenangkan dilakukan di sela jam pelajaran.
semoga permainannya bermanfaat dan selamat mencoba. ^_^

25/09/13

Mencongak itu...

Banyak orang yang menjadi heran ketika melihat siswa sd yang mampu melakukan mental aritmatika (baca: mencongak) terutama untuk perkalian puluhan dengan puluhan. Namun, sebenarnya ada beberapa bilangan yang sangat mudah dicari perkaliannya, sehingga sangat mudah untuk melakukan perhitungannya bahkan jika hitungan dilakukan di luar kepala.

 Nah, ini saya share beberapa cara perkalian puluhan dengan puluhan yang memungkinkan dilakukan trik. jadi, anda bisa juga melakukan mencongak. silahkan lihat power point berikut untuk mendapatkan slide yang berhubungan dengan trik menghitung tersebut.


 menghitung-itu-mudah-trik-menghitung



  trik menghitung ini sederhana, jadi bisa dilakukan siapa saja.

selamat mencoba. ^__^

23/09/13

Belajar sambil nge'Net'


“Belajar dari mana saja dan kapan saja” bisa jadi adalah ungkapan yang pas untuk mengistilahkan penggunaan Applet berikut dalam proses belajar.  Apalagi dalam belajar ilmu yang cukup ditakuti oleh siswa, matematika. Banyak applet di internet yang bisa digunakan sebagai alat bantu dalam mengajar dan belajar. Namun, sebelum melangkah lebih jauh ada baiknya jika kita mengenal lebih dahulu apa sebenarnya yang dimaksud dengan Applet.

Menurut Wikipedia, applet merupakan sebuah aplikasi kecil yang ditulis dalam bahasa pemrograman java. Pengguna menggunakan java applet dari sebuah halaman web, yang kemudian digunakan dalam Java Virtual Machine yang prosesnya terpisa dengan halaman web tadi kendati applet bisa ditampilkan dalam halaman web tersebut. Java applets pertama kali dikenalkan pada tahun 1995 dengan menggunakan versi pertama bahasa Java.  Sekarang ini, Java applet dapat ditulis dengan bahasa program mana saja yang akan dikompilasi dalam Java bytecode, meskipun biasanya ditulis dalam bahasa Java. (http://en.wikipedia.org/wiki/Java_applet)

Dalam post ini akan dibahas beberapa contoh applet yang bisa didapatkan dari web fruedenthal institute yang akan merupakan lembaga yang mengembangkan RME. alamat websitenya adalah (http://www.fisme.science.uu.nl/publicaties/subsets/en/).



  1.   Broken calculator (http://www.fisme.science.uu.nl/toepassingen/03363/)

interface applet broken kalkulator

 Banyak guru matematika yang sangat tidak sepakat dengan penggunaan kalkulator di dalam kelas. Tapi, kalkulator yang satu ini sangat bagus untuk dicoba, bahkan ketika guru hanya memberikannya sebagai permainan selingan kepada siswa tanpa menggunakan programnya secara online.

Idenya adalah siswa dapat menemukan operasi dengan hasil yang sudah ditentukan menggunakan kalkulator. Tantangannya adalah  tidak semua tombol dalam kalkulator itu dapat digunakan.
Permainan ini dapat melatih number sense siswa, dan juga melatih siswa dalam menuliskan operasi bilangan, dalam hal ini aturan pengerjaan penjumlahan, pengurangan, perkalian, pembagian, dan kurung.
Ini salah satu soalnya.
 
contoh soal broken calculator



Permainan ini adalah permainan yang berkaitan dengan perkalian dan konsep dari perkalian yang merupakan penjumlahan berulang.

Interface permainan ini


Siswa hanya diminta untuk menghitung berapa hasil perkalian dan menghubungkannya dengan total harga perangko yang ditempel.
contoh soal dalam permainan ini
Permainan ini sebenarnya bisa efektif dalam belajar perkalian, hanya saja kurang sesuai dengan keadaan di Indonesia, karena harga perangko di Indonesia berkisar pada ribuan, cukup berbeda dengan yang ada pada soal pada applet ini. Kendati demikian, ide permainan ini bisa dipakai oleh guru dalam mengajarkan perkalian.
interface ketika jawaban benar



19/09/13

A page closer to RME
(a reflection to chapter 2) part 1


RME is one of instructional theory in education about which mathematics teacher have to know. If one doesn’t know about RME at all, this paper will provide a sufficient information about it which hopefully, will make one know it more.  

RME (realistic mathematics education) is a teaching learning theory which was developed and first introduced by Fruedental Institute in Netherland. This theory has a relation to what one people thought about mathematics. Even more, despite what people think about mathematics, this theory which is influenced by Frudental has a concept where mathematics is seen  as human activities. According to Fruedental, students have to be more active in mathematics learning, thus mathematics teaching should guide the students to reinvent the mathematics theory by experienced it themselves.

There are five characteristics of RME which was the combination of Van Hiele’s three level, Freudental’s didactical phenomenology, and Treffer’s progressive matematization. These characteristics can be used as a guidelines not only in the process of adapting RME, but also as the process of training for teacher wanna be. Those characteristics are:

  1.  The use of context in phenomenological exploration
  2. The use of models or bridging by vertical instruments
  3. The use of  pupil’s own creations and contributions
  4. The interactive character of teaching process or interactivity
  5.  The intertwining of various mathematics strands or units

The use of context in phenomenological exploration
In RME, mathematics instruction should make the students experienced the mathematics concept in contextual situation. More importantly, mathematics should not be taught directly as a formal knowledge. Mathematics should serve as an opportunity to provide the students the progress mathematics from informal notion to mathematical domain.
The process of transferring the concept describe as conceptual matematization (according to de Lange). This process let students to do many things, such as exploring the given situation, finding and identifying the relevant mathematics element, discovering patterns by schematizing and visualizing the concept, and developing a model which will lead to a mathematical concept. It is expected that the pupils will use the mathematics concept in other aspects of their live, thus it will reinforce and strengthen the concept. This last process called applied mathematization.

The use of models or bridging by vertical instruments
There are two terms of model that related to this characteristics. Those two are model of and model for.
Model of is when the pupils familiar with the situation, whence model for is an entity which is gotten by a process of generalizing and formalizing. So in other word between daily life situation and formal level of mathematics there are two steps of model, model of as a referential model, and model for as general model.

The use of pupils own creations and contributions
by making a product, pupils will be able to show their reflection on the learning processes. not only that, the greater initiative are shown by the students when they are encouraged to produce their own way to solve a problem. in addition to that, this step can be seen as a part of an assessment.

the interactive character of the teaching process or interactivity
in RME teaching learning processes, the interaction between teacher and the pupils take place as a substantial part. by using the constructive learning processes pupils will find a way to develop their confidence in using math.
the constructive learning processes are shown in explicit negotiation, intervention, discussion, cooperation, and evaluation.

the intertwining of various learning strands or units
the integration pf mathematical units , also known as holistic approach, is very substantial in RME. this process implies that the learning units should not be seen separately. therefore, students will be able to apply mathematics in daily life because this intertwining processes.

11/09/13

Learning without books are too hard
(a reflection to a chapter in A Decade of PMRI in Indonesia)


Chapter title: The Development of Learning Materials for PMRI by Siti M. Amin, Hongki Julie, Fokke Munk, Kees Hoogland


As the PMRI is being developed, the needs for the learning material were increasing. Furthermore, teachers involved in PMRI project workshop even asked for those materials several times. This was why PMRI team decided to commence developing the materials based on PMRI.

The first materials were initiated by four adapting universities (UPI, UNESA, UNY, USD) in 2001. Those first materials based on the national curriculum at that time, the knowledge of designing materials, and the knowledge of learning process for children. Not only that, the materials also put an emphasis on mathematics concept by guiding the teacher in organizing the activities that let the students to build the concepts. However, after some consideration in evaluation and advices from Dutch consultants the learning material which is needed should be more oullined.

Those development on the learning materials led to some argumentation, such as some suggested to translate the mathematics materials from Dutch RME textbooks, but the others argue to do the otherwise. Those argumentation forced the PMRI tem to make a task commitee to continuing the materials development.
The commitee had a task to develop some kind of workshop to select the prospective writer which hopefully would give contributions in designing the learning materials for primary. Furthermore those designs should be related to the RME development in other countries such as Netherlands and US. Those learning designs had to formulate some standards in the materials. Some of the standards developed at that time were that learning materials should be in line with the curriculum but still use realistic problems to motivate and help the students in learning mathematics.

Since the textbooks were for PMRI usage, of course the guidelines for making those came from RME which offer the directions of some instructions which have purposes to support the students in construct or re-invent their mathematics knowledge through problem-centered interactive instructions.
At the innitial project of PMRI one pf the dutch consultants, Frans Moerlands, let the concept of iceberg to develop mathematics knowledge introduced. The iceberg is used as a metaphor of designing activity’s model. It not only indicates the level of conceptualization of mathematics concept, but also gives the plausible map of a hypotetical learning trajectory.

The author needs both desingning the textbooks which are suitable for children and regarding the role of the teachers. Nevertheles, the idea of the materials was great, yet the real challenge came from the the textbookse operational which was giving pressure in the arrangement of the books itself.
However, after the development process rolled out there were some admission thatnew laerning materials are not sufficient in the behavorials change. Hence, the authors had obligations to write the teacher’s instructions, so that the teachers would get the basic knowledge about RME practices.

In 2007, the PMRI team commenced the work on completing the textbooks by developing a trajectory where the materials’ production go along side with the workshops. It is believed that developing the architecture of the materials is an substantial element in constructing students’ textbooks. So, thats why the first step done was the development in the arrangement of the materials.

In the begining the workshop participants disscussed the arrangement by bringing their own experiences as a teachers, a lecturers, or even a students. Furthermore, they exploring several textbooks from other countries (Dutch, US, and Singapore) to widen the extent of the architecture samples. From those disscussion rose some questions not only about the textbooks but also about the teacher guidance.

In the end of the workshop, those participants producing a list about the characteristic for indonesian teachers that relevant and convinient according to themselves. And the majority of the participants wanted to differ the books for students and teachers. The students’ books of course consist of mathematics material, while the teachers’ books consist of the written explanation of PMRI ideas and practicess.

The workshop alone was guided by not only experienced mathematics educators from Indonesia which has a lot of experiences in developing materials for indonesian classrooms, but also Dutch consultant which experienced in building learning materials in RME.

Later on, in november 2007, a group of potentials was invited in a meeting which had aims to develop some learning examples that reflect PMRI. This group consisted of mathematics lecturers and teachers having experiences in teaching PMRI in pilot classes. During the meeting, each and every single of the activities held in there was similarity to RME lessons. One of the outcomes that come from some discussion in the meeting was participants see eye to eye in the differences that need to meet in the lesson materials, so that it was hard to design a material for the whole country. Therefore, the team chose to develop one set of material as an example for a basic  for the local team to create their own version in accordance with the regions’ norms.

02/09/13

Games help
(A Reflection of journal)


Journal title:  Design research in Mathematics Education: Indonesian Traditional Games as Preliminaries in Learning Measurement of Length ByAryadiWijaya

As show in its title, this journal was a design research or a developmental research especially in Mathematics Education area whilst using RME as its instructional theory. This research mainly concern in one of students’ ability that is measurement as one of mathematics material in Indonesian’s SD N Percobaan 2 Yogyakarta.
kindergartens and primary schools. However, this research was conducted in grade 2 while the try out was held in grade 1.

The writer argue that measurement is taught directly in formal level for traditional education approach, thus make those students having difficulty in understanding the fundamental concept of measurement. Furthermore this writer say that even if the students are properly use the measurement devices such as ruler, it do not guarantee the understanding of the meaning behind measuring itself. That is why the researcher propose this research to develop an instructional activity which could improve students’ ability and understanding to mastering the fundamental concept of measurement

Therefore, to reach the goal an activity preferable the one that students already know are needed to make them experience and understand what the measurement really is. The researcher chose two traditional games which is well known among the students as activities to introduce the concept of measuring. Those activities are “gundu” and “benthik”.

"gundu" games
“Gundu” is a marbles game while “Benthik” is a stick game. The similarity between the two which made the researcher to use it as a preliminaries in teaching and learning is the way the player of those games to determine the winner. Both games need to measure the distance of the games object (marbles or stick) by using a unit such as span or a particular stick (in “benthik”). The researcher saw that this non-standard measuring process can be potentially used to introduce the basic concept of measurement that is unit iteration and identical unit.
"benthik" games